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FINITE ELEMENT ANALYSIS OF LIFT BUILD-UP DUE TO 
AEROFOIL INDICIAL MOTION 

JUN SHI* AND DENNIS HITCHINGS 
Department of Aeronautics. Imperial College, London S W7 2AZ. U.K.  

SUMMARY 
In this paper the problem of impulsively started aerofoil or sudden change of incidence of an aerofoil in 
incompressible potential flow is investigated. The essence of solution lies in the representation of a timely 
and spatially varying wake in a largely irrotational potential flow field. This is achieved by representing the 
wake through velocity potential difference, which seems to be the only way of imposing a velocity difference 
condition in the finite element context with velocity potentials as the basic unknowns. Superposition is 
employed to meet various boundary conditions, which is justified by the linearity of the problem. The finite 
element solutions are compared with those from singularity method. 
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1. INTRODUCTION 

The aerodynamic force build-up on an aerofoil performing indicial motion is a problem of 
fundamental interest in unsteady aerodynamics. The subcritical response of an aeroplane in 
accelerated motion, such as the fast maneuver of a military aircraft or active controls, requires 
a theory of general time-dependent aerodynamics.' The aerodynamic force of arbitrary aerofoil 
motion can be derived from such forces of indicial motion by the convolution integral. Another 
approach is built on the reciprocal relation between indicial and oscillatory motions,2 since with 
mild restriction on continuity and differentiability an arbitrary function can be expanded into 
a Fourier series3 Consequently, if we know the solution for oscillatory aerofoil motion over 
a wide range of frequencies, then, due to the linearity of the problem, they can be superposed 
in a truncated range of frequency to make up the solution for arbitrary aerofoil motion. However, 
this is an expensive process because the number of frequency points required to form a desired 
solution is normally large. 

The indicial motion of an aerofoil can be categorized as the sudden change of heaving rate and 
pitching rate or the sudden change of incidence and control deflection (see Figure l(a)-(d)). They 
are similar in essence, so only the sudden change of incidence which is also known as the 
impulsively started aerofoil, is explained in more detail below. A highly idealized example of an 
indicial problem is that an aerofoil in a uniform flow field suddenly changes its incidence. This is 
equivalent to the problem of an aerofoil stationary in still air at one instance of time but gains 
a non-zero speed at  next instance. As the flow field is inviscid and initially circulation-free, 

* Please send all future correspondence to: Dr. Jun Shi, Dept. of Aeronautics, The Queen's University of Belfast, 
Belfast BT9 5AG, Northern Ireland, Tel: 0232 245133, Fax: 0232 382701. 

027 1-2091/93/17O401-16$~3.O0 
0 1993 by John Wiley & Sons, Ltd. 

Received June I992 
Revised April 1993 



J.  SHI AND D. HITCHINGS 402 

(a) 

Figure I(a). Step change of heaving rate 

Figure I(b). Step change of pitching rate 

t 

Figure I(c). Step change of control surface deflection 

Figure I(d). Step change of incidence 

circulation should remain zero subsequently according to the Kelvin’s law of conservation. 
Despite that the circulation of the whole flow field is zero, circulation or lift on the aerofoil 
increases as time develops accompanied by vortices of opposite sign shed from aerofoil to 
compensate for the increase of circulation on the aerofoil (Figure 2). These rotating fluid elements 
form a wake starting from the trailing edge of the aerofoil and they are the only part of the flow 
field that is rotational. For a more detailed discussion, the reader is referred to Ba t~he lo r .~  

The original work in this field was done on a plate by Wagner.’ To include the effect of 
thickness, deformation of wake and large motion amplitude, Giesing‘ and Basu’ developed an 
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Figure 2. The lift build-up mechanism 

unsteady Smith" method. They allowed the strength of the vorticity on the aerofoil surface to vary 
with time to accommodate vortex shedding. The solution is carried out in time domain by 
a time-marching method. The position of each vortex that has been shed is determined by the 
whole flow system at the last time instance. 

Despite of the advantages of finite element over the boundary integral method,g- lo a finite 
element approach for this problem does not exist. In the following sections of this paper a finite 
element implementation is proposed to fill this gap. The approach advocated is general and not 
necessarily restricted to the present problem. It can be easily incorporated into an existing finite 
element package and provides a competitive alternative to the boundary integral method. In 
Section 3 an explicit time integration scheme is given with discussion on time-step selection in 
Section 4. In Section 5 numerical examples are presented and compared with those from other 
sources. 

2. FINITE ELEMENT FORMULATION FOR INDICIAL AEROFOIL MOTION 

To put the aforementioned phenomenon mathematically, let us define a velocity potential 4 in R, 
where R is a fluid domain that encompasses the aerofoil but excludes the wake, as shown in 
Figure 3. Since the flow is assumed to be incompressible and irrotational except for the wake, the 
velocity potential 4 must satisfy the Laplace equation plus various boundary conditions: 

V%p=O in R, 

-u,n on aR1, a4 _- 
an 

A ~ = A ~ ( s ,  t )  on an3, 
where n is the normal to the boundary andfa known function determined by the aerofoil motion. 
Note that dR3 is in fact a double surface of zero thickness. 

As in Hitchings" and Shi,12* l3  we have replaced the common velocity difference boundary 
condition on the wake with the velocity potential difference condition, because such a form of 
boundary condition can be easily accommodated in a finite element model, which will be 
discussed later. Since the finite element discretization of the Laplace equation has been fully 
explained elsewhere,12. l4 the key issue is how to simulate the rotational wake in a finite element 
context. The wake in the present problem is different from the wake of an oscillating aerofoil 
addressed in Hitchingsl' and Shi," where the wake is actually in a steady state. In this paper it is 
the transient development of the wake that is of concern. 

The wake is assumed to be straight, infinitely thin and aligned with streamline at infinity 
exactly as in Hitchings' and Shi.13 Consequently, the non-linearity coming from wake deforma- 
tion is not included. The shed vortex is assumed to be convected at the free stream velocity, so 
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Figure 3. Problem definition of aerofoil indicia1 motion 

that the strength of the vorticity at time t and position s is 

1 ar(t-s/u,) 
t(s, t ) = v ,  at 9 

where r(t) is the circulation around the aerofoil. Note that the actual vorticity is actually the 
strength of vorticity per unit length, as we are dealing with an infinite thin vortex wake. 

The velocity potential difference A 4  at a pair of points immediately above and below the wake 
can be found by integrating the velocity along the wake 8R3 and the aerofoil surface dRz in the 
same way as described in Hitchings:" 

AqW, s)= s (Udx+Vdy) 
in, + Fl22 

=r(t)+ T ( s ,  t)ds (OsssLI , t )  (3) 

(s 2 U ,  t ) .  

s 
=O 

However, we can see that equation (3) is different from the corresponding equations in Hitch- 
ings" and Shi.I3 Firstly, since no assumption has been made about the circulation on the 
aerofoil, the variation of the circulation or the vorticity t(s, t) from equation (2) is not explicitly 
given; secondly the problem is solved in the time domain rather than in the frequency domain. 
Therefore, the strength and the length of the wake depend upon time and only the part of an3 
already reached by the wake front (s< U,t) has non-zero A&; otherwise, A$=O. 

Now we will illustrate how to solve equation (1) with focus on the boundary condition as in 
equation (3). C$ is interpolated as C$ = Ni C$i on each non-overlapping subdomain (a, and an,) or 
element. Equation (1) weighted by Wi is integrated by part, which for a 2D problem gives 

Special treatment is needed for those elements either above or below the wake, because of the 
boundary condition imposed by the wake. For easiness of discussion we consider an eight-node 
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quadrilateral element with the interpolation of the potential: 

where Ni are the element shape functions and c$i are the nodal potentials. 
For those elements on the upper surface of the slit (see Figure 3), if the nodal variables 

under the wake 4; are chosen as basic unknowns, then those above the wake 4; are the sum of 
A4k and 4;: 

i =  1 k = l  

This results in a slight modification in formulating the element matrix for those elements sitting 
above the wake and for s <  U,t (see Figure 3): 

or in a matrix form 

where 

@:={dl . . . &}  ( i , j = l ,  8 , k = l ,  3). 

Element matrix is then assembled into the global matrix which now has extra terms introduced 
along the cut: 

C(P=FI +Fz (9) 

where 

C=CC,,  
F1=Cf1, 
Fz = Cfz. 

The extra terms on the right-hand side of the above equation come from the wake and can be 
assembled in the same manner as described in Hitchings" and Shi.13 Now, however, only those 
elements inside the wake have contributions. This is because we are dealing with a growing wake 
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of finite length rather than a steady and infinitely long one as in Hitchings" and Shi.I3 The actual 
form of is given in Section 3. 

3. AN EXPLICIT TIME INTEGRATION SCHEME 

To obtain a response in the time interval T, it is divided into N time subintervals At,. At time zero 
the indicial motion is imposed on the aerofoil. Because of the indicial nature of the motion, there 
is no time for the development of the circulation or for the vortex to be thrown into the wake from 
time t = O -  to t = O + .  Hence, there is no wake or circulation around the aerofoil. At each time 
instance t,, a newly shed vortex Ar,  of a length UmAt, is added to the wake, where Ar ,  is decided 
by the Kutta condition at t,,. Due to the linearity of the problem, the solution at t, is divided into 
three parts. The first part, +o, is non-circulatory, time-independent and is the same as the solution 
at t =0, so it is only solved once at the beginning of the time marching process. The second part, 
&, corresponds to the wake system at t ,- l  convected a distance At,U, downstream during the 
time interval [t,- 1, t,,]. The last part, 42, is associated with the newly shed vortex Ar,,. This can 
be summarized as 

t = O ,  4=4,, r = r, =o, 
t=tn-lr 4 = 4 n - l r  r = r, - (10) 

t=t,,, 4=4.=&o+4i+Arn42,  r=rn-l +Ar,,, 

which gives the velocities at time r,, as 

U,=Uo+Ul+Ar,U2, 

V,= Vo+ V1 + A r n  V2. 

A graphical representation of the velocity potential difference on the wake at  different time 
intervals is given in Figure 4. 

do, 41 and 42 all have to satisfy the Laplace equation. However, the boundary conditions are 
different for each 4: 
do: a4/an= u, on an,;  a#/an=f on an,; A ~ = O  on all s, 

&: d4/an=O on an,; a4/an=O on an2; A+=convected on O I S ~ U , ~ , , ,  (12) 

42: d$/an=O on aR,; a4/dn=O on an,; A4=1-0 on O<slU,At,, 

wherefis a known function depending on the form of the indicial motion. At each time step, Ar ,  
is decided by the Kutta condition of smooth flow at the trailing edge: 

Ar,=( VTE- VIE- VTE)/VzE, (13) 
where VTE is a prescribed normal velocity at  the trailing edge for a particular mode of indicial 
motion (see Figure 1). Equation (13) clearly indicates that AT, is dimensionless. In this paper, it 
simply has the magnitude of velocity difference but not its dimension. This is also true for 
equations (lo), ( 1  1) and (14). 

The pressure at  a time instant t,  can be determined by the Bernoulli's theorem: 

Po,,)= -p(a4/at+(u2+ v 2 p )  
= - ~( (4 .  - 4 n  - I )/(tm - t n  - I 1 + UO(UO/~ + UI + Arnu,) + VO( v0/2 + Vl+ Arm V2)). (14) 

Note that in equation (14) we have replaced the time derivative of a+/& by a first-order explicit 
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Figure 4. Time integration scheme 

backward difference scheme. This is adopted for its simplicity L-spite of the existence of various 
other higher-order and implicit difference schemes. The squares of U1, U2, Vl and V, have been 
neglected because of the small disturbance assumption. The second-order terms of mean velo- 
cities Uo and Vo are nevertheless retained for they might affect the moment resultant in spite of the 
fact that they are related to the non-circulatory part of the flow and do not influence the lift force. 

The pressure can then be integrated along aerofoil surface to get the lift Land the moment M at 
time t,: 
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where (x,,, yo) is the reference point for the moment and 
surface. From equation (15), we can get the lift and moment coefficients C,(t) and C,(t): 

means integral along the aerofoil 

Cc(t)=Ut,)/(UZ+ w 2 ,  

C,(t) = M(t , ) / (  uz + v2)/2. (16) 

This process is repeated until the desired time T is reached. 

4. THE SELECTION OF TIME STEP Ar 

To capture the smallest detail of the flow transient to the aerofoil motion, a very small time step 
was used initially (ArUrn/C=0.02, where C=chord). However, it was found that the lift force 
oscillates, especially at the beginning of time marching process. It oscillates more violently when 
the time step was halved (see Figure 5). This seemed to be contradicting to what was expected but 
a careful examination of the effect of mesh size on the wake shows the reason behind it. 

In Figure 5(b) the dashed vertical lines represent the position of element nodes on the wake. 
Vortices are convected from left to right at a speed Urn. Each square or discontinuity in the 
solution curve is a discrete time station in the time marching process. It can be seen that between 
two nodes the lift falls and rises. If the time increment is too small compared to the distance 
between two consecutive nodes then it will take many time steps for the wake front to travel from 
one node to the next, during which the vortices between the two nodes are not known or ‘felt’ 
because there is no node there to sense or resolve it. The solution then becomes undefined in that 
part. This phenomenon is more prominent when the non-dimensionalized time At U,/C is small, 
because at  the start the wake is short, so that the unaccounted wake front constitutes a substantial 
part of the whole wake. Consequently, the solution is significantly influenced by it. 

Having found this, a much larger time step was employed. As explained previously ArU, 
should be greater than the node spacing, As, to avoid artificial oscillations. In short, the condition 
AtU,/As2 1 should be satisfied. From Figure 6 it is obvious that At can be as big as 20 times 
As/iJrn at the start and AtU,/Cx 1 later on without a noticeable deterioration in accuracy. This, 
of course, is appealing if one has limited computer resources. Consequently, a three-stage time 
increment scheme is adopted with 0.2, 0.4 and 0.6, respectively, and 20 steps for each increment. 
The steady state is thought to be reached and thus the time integration is terminated when the lift 
changes less than 0 1 %  during a time interval ArU,/C= 1. 

5. NUMERICAL EXAMPLES AND DISCUSSIONS 

5.1. Plate aerofoil 

The first two cases are actually related to the numerical modelling of wind tunnel interference. 
In other words, the influence of the finite dimension of a wind tunnel, especially the height H of 
the tunnel for a two-dimensional problem, on quantities such as lift and moment. Because of the 
presence of the wind tunnel walls, the flow direction and streamline curvature will be different 
from those in air-free conditions. In other words, the circulation around the aerofoil is changed, 
which is normally referred to as lift interference. At the same time the wind tunnel walls also affect 
the flow velocity and longitudinal velocity gradient or the velocity potential representing the 
volume of the aerofoil and the wake, which is the so-called blockage interference effect. These two 
effects are usually assumed to be independent of each other and alter the characteristics of flow.” 
Since the present finite element analysis truncates an infinite problem domain to a finite one, the 
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u,t/c 
Figure 5(a). Lift oscillation due to too small time step: -, A t = l ,  5, 10; 0, At=2, 5. 10 

', At = 1, 5. 10; 'a ', At = 2. 5,  10 

Figure yb). Lift oscillation due to small time step (close up): -, A t = l ,  5. 1 0  0 ,  At-2, 5, 10 
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Figure 6. 

UJC 
Theeffect oftimestepsizeonsolutionaccuracy: --,exact;----,At=20;----,At=50;---,At= I 0 0  

U"K 
Figure 7. Lift on a plate after a sudden change of incidence H / C = 2 :  --, ChungI6; ---- , finite element 
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Figure 8. Lift on a plate after a sudden change of incidence H / C = 4  - - -  , ChungI6; ---, finite element 

boundary condition on the upper and lower mesh boundary is no through flow. This means that 
the fluid is confined to flow between two parallel artificial barriers, the effect of which is similar to 
that of wind tunnel walls. 

Figures 7 and 8 demonstrate the finite element solution together with those of ChungI6 for 
indicial lift build-up with H / C = 2  and 4, respectively. The agreement is very good despite of the 
fact that for the present formulation the Kutta condition is zero normal velocity rather than zero 
pressure loading. This confirms the theory that for a cusped trailing edge the Kutta condition can 
be interpreted as both zero pressure loading and zero normal velocity at the trailing edge. The 
effect of wind tunnel interference is well simulated as it can be seen that for the smaller H/C value, 
the lift build-up is faster. We can see that the agreement is better for the case H/C=2 than for 
H/C=4, because the same number of elements was used for both, which gave the former a higher 
mesh density than that of the latter. 

The previous two cases correspond to sudden change of incidence. Other modes of indicial 
motion have also been investigated. The non-dimensionalized lift build-up for a sudden change of 
heaving rate, pitching rate and control deflection are given in Figures 9, 10 and 11,  respectively. 
Initially, the same mesh for the first two problems was employed and finite element results show 
considerable discrepancy against the analytical solutions. This is because we are now again 
dealing with an infinite domain problem. Consequently, a larger mesh was used with the upper 
and lower mesh boundaries 4C (instead of 25C) away above and below the aerofoil. Naturally. 
the new finite element results are much improved. 

5.2. Vnn Mises ( i e r o f d  

Numerical tests were also carried out on a symmetric 8.4% thick Von Mises aerofoil (see 
Figures 12 and 13). As the method employed by Basu’ allows for wake deformation which is not 
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0.46 

0.10 

Figure 9. Lift on a plate following a sudden change of heaving rate: --, analytical; -- --, finite element (small mesh): 
0, finite element (large mesh) 

Figure 10. Lift on a plate following a sudden change of pitching rate: __, analytical; ----,finite element (small mesh); 
0, finite element (large mesh) 
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Figure 1 I .  Lift on a plate following a sudden change of control deflection: -, analytical; ----, finite element (small 
mesh); 0, finite element (large mesh) 

0.00 . - - - ~ - - .  . , - - ~. - - ~. - - -  - - - - - - - .  - ~ - .  - - - - 1 - - - - - - . -  - 
0.0 0.4 0:a 1.2 I .e t l o  

u,t/c 
Figure 12. 8.4% thick symmetric Von Mises aerofoil; lift after a sudden change of heaving rate: -, Basu and 

Hancock’; ----, Giesing6; 0, finite element 



414 J.  SHI AND D. HlTCHlNGS 

u-VC 
Figure 13. 8.4% thick symmetric Von Mises aerofoil; moment about leading edge after a sudden change of heaving 

, Basu and Hancock’, 0, finite element 
rate: 

0.6 j 

- - - -  - - - - .  . . . . - . , . . . . . . - . - *  
0.0 0.4 0 :a I .z 1.0 2 .o 

UJJC 
Figure 14. Thickness effect on Wagner function (symmetrical Joukowski aerofoil): --, plate; 0, 5 %  thick; 

A ,  10% thick 
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Figure 15. Thickness effect on lift build-up of a 10% thick aerofoil: -. sudden change of heaving rate; ----, sudden 
change of pitching rate; --- -. sudden change of control deflection 

incorporated in the method now used, there is a substantial difference between the two solutions 
at the initial transient stage. However, when time develops they tend to converge to the same 
value. This has been well explained by Graham" that the initial vortex roll-up has a large 
influence on the lift and moment build-up in the early stage, but as time goes on its effect 
decreases and wake can be well represented by a straight line. This is well confirmed by the good 
agreement between the present solution and that of Giesing,6 which does not include wake 
deformation either. 

5.3. Thickness e f k t  

The influence of aerofoil thickness on lift build-up was studied on 5 and 10% thick symmetric 
Joukowski aerofoils. As can be seen in Figure 14 the 10% thick aerofoil takes a longer time to 
reach a steady state than the 5 %  thick one and the plate. This has also been observed by Giesing.6 
However, thickness does not affect the lift build-up of different modes of indicial motion. This is 
illustrated in Figure 15 in which the lift build-up of a 10% thick aerofoil shows little difference for 
the sudden change of heaving rate, pitching rate and control deflection. 

6. CONCLUSION 

In this paper a finite element formulation for the transient wake development due to aerofoil 
indicial motion was proposed. The velocity potential difference was employed to simulate the 
vortices in the wake. The time stepping scheme was examined with special attention to time 
increment size, which has to be large enough to allow the wake front travel at least from one node 
to the next. Numerical experiment showed that AtU,/C=0-2 at the beginning and AtU,JC= 1.0 
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at later times could be used. Although in this paper the analysis was performed on indicia1 
motion, it is apparent that, as long as the assumption made in Section 2 of this paper holds, then 
the finite element method proposed can be easily employed for any time transient problem. This 
can be achieved by simply applying the relevant boundary condition on the aerofoil surface due 
to its motion at different times. 
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